Supersymmetric Bi-Hamiltonian Systems
نویسندگان
چکیده
We construct super Hamiltonian integrable systems within the theory of supersymmetric Poisson vertex algebras (SUSY PVAs). provide a powerful tool for understanding SUSY PVAs called master formula. attach some Lie superalgebraic data to generalized W-algebra and show that it is equipped with two compatible PVA brackets. reformulate these brackets in terms odd differential operators obtain bi-Hamiltonian hierarchies after performing analog Drinfeld–Sokolov reduction on operators. As an example, system constructed from $${\mathfrak {g}}=\mathfrak {osp}(2|2)$$ .
منابع مشابه
A bi-Hamiltonian Supersymmetric Geodesic Equation
A supersymmetric extension of the Hunter-Saxton equation is constructed. We present its bi-Hamiltonian structure and show that it arises geometrically as a geodesic equation on the space of superdiffeomorphisms of the circle that leave a point fixed endowed with a right-invariant metric. AMS Subject Classification (2000): 37K10, 17A70.
متن کاملQuantum Bi-Hamiltonian Systems
We define quantum bi-Hamiltonian systems, by analogy with the classical case, as derivations in operator algebras which are inner derivations with respect to two compatible associative structures. We find such structures by means of the associative version of Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.
متن کاملBi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
متن کاملCompletely Integrable Bi-hamiltonian Systems
We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...
متن کاملSingularities of Bi-Hamiltonian Systems
We study the relationship between singularities of bi-Hamiltonian systems and algebraic properties of compatible Poisson brackets. As the main tool, we introduce the notion of linearization of a Poisson pencil. From the algebraic viewpoint, a linearized Poisson pencil can be understood as a Lie algebra with a fixed 2-cocycle. In terms of such linearizations, we give a criterion for non-degenera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2021
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-03974-7